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Motivation

* The ECM is a type of time series model with
which we can estimate the speed at which two or
more time series return to their common
equilibrium following a shock that disturbs this
equilibrium

* The ECM can directly estimate both long-run and
short-run effects of one time series on another

* Thus, ECMs introduce an element of theory to
time series analysis, which is often criticized as
being theory-free



The basic form of the ECM

¢ AYt — 6 + yAXt—l + aECTt_l + gt
where ECTis the so-called ,,error correction

term” which measures deviations from the long-
run equilibrium between Yand X

 ECMs can be estimated with OLS, although
other, more sophisticated methods have been
developed (e.g. Johansen’s Maximum
Likelihood approach)



Stationary and non-stationary data

 ECMs are most often estimated using non-
stationary time series

e A stationary time series has a finite mean and
variance that do not vary with time*

* = pYegt &
—If 0 < |p| < 1, Y is stationary, otherwise not

—If |p| > 1, then Y ,explodes” — not very plausible
In economic settings

— But whatifp =17

* This is the definition of weak stationarity. Strong stationarity requires that higher order moments also be constant.



Thecaseof 0 < [p]| < 1

Yo = pYeq + &

Y, = pYy + &

Yo = pY; + &

Therefore

Y, = p(pYot+ &) + &, = p?Yo + peg + &

Y; = pYs, + &5

Therefore

V3= p(p(pYo+ &) + &) + &3 = p°Yo + p?ey + pe; + &3
Ultimately

Y, = pZYO + p’;‘lelt-_l-_ pt %, + o+ pt e, +ptl g
Vi=pYo+ Zicip 7'



Thecaseofp =1

Vr=Y_1+ &
Yl — YO + &1
YZ — Yl + Er
Therefore

Y2: (Yo‘l‘gl)‘l‘ Ey = Yo‘l‘ €1+ &Er

Y3 = YZ + &3

Therefore
Y3:(Y0+€1+€2)+83=Y0+€1+€2+€3
Ultimately

Yt: Y0+ €1+ €2+ "'+€t—1+ Et

Yi



Integrated time series

When p = 1 we refer to the series as ,,integrated”
YV — t

Recall: Yy = Yo+ Xi_q &

As the time interval £ becomes very short (i.e. we

approach continuous time), this approaches an integral —
therefore ,integrated”

An integrated time series is one type of non-stationary
time series

A time series is integrated of order d — referred to as I(d) —
if it becomes stationary after being differenced d times

fY, = Yy + Xt ¢, then AY,= (Y;—Y,_;) = &, whichis
stationary
So the time series Y; = pY;_1 + & withp = 1is I(1)



Example with GRETL

Generate a random normal series RanY
Generate a random normal series RanX

Look at graphs of RanYand RanX what do you
see?

Now generate the following cumulative sums
using the ,,cum® command (i.e. with p = 1)

Yt — Yt—l + RanYt

Xt — Xt—l + RanXt
Look at graphs of Yand X, what do you see?
Generate the first differences of Yand X, what is
the result?



Why does this matter? (I)

* There are several important differences between 1(0)
(stationary) and I(1) (integrated) time series

* |(0) series , forget” — they have finite memory, the
effect of a shock is transitory

— Recall: Y; = ptYy + X!, ptig

— Only the most recent shocks affect Y;, earlier shocks fade
with increasing exponents on p

* |(1) series never forget — they have infinite memory,
the effect of a shock is permanent

— Recall: Y; = Yy + X, g

— Y; therefore equals its initial value, plus the sum of all
shocks that have occurred since t=0.



Why does this matter? (lIl)

* Furthermore, many of the time series that we
work with in empirical economic research (for
example, many prices) behave as if they were
(1)

* Go back to the data you generated with GRETL
and see for yourself



Why does this matter? (lll)

* Most important, although the theory was not
developed until the 1970s and 1980s, it has long been
recognized that regression with non-stationary data
can lead to ,,spurious regression” —i.e. nonsense

results

e Go back to GRETL:

— Run the regression RanY; = [y, + [{RanX; —what do
you expect, what do you get?

— Run the regression Y; = [, + [1X; —what do you expect,
what do you get? Surprised?
— With I(1) data, the likelihood of making a Type-Il error

(rejecting the true null hypothesis that there is no
relationship between Yand X) increases dramatically



Integration and cointegration

What we need is a means of distinguishing between
spurious regression and a true relationship

One formerly popular solution was to analyze I(1) time
series in differenced form: AY,= f, + [1AX;

However, this assumes that X only has short-run effects on
Y, and ignores the possibility that they share a long-run
relationship

If they do share a long-run relationship, estimating an
equation in first differences is inefficient because it fails to
account for information about this relationship

When two integrated variables share a long-run equilibrium
relationship, they are referred to as cointegrated



Integration, cointegration and random
walks (1)

Imagine a drunk staggering out of a pub. Each step is a
random draw, and his position after ¢ such steps is the sum

of these random draws: Y; = Yi_, ¢

This is sometimes referred to as a random walk — a random
walk is an example of an I(1) or integrated, non-stationary
time series

Imagine a second drunk who leaves the pub at the same

time: X; = Yi_, &

If we regress Yon X (or Xon Y) we run the danger of
spurious regression. The paths taken by the two drunks are

random and independent, but there is a high probability
that we will reject the true null hypothesis that they are



Integration, cointegration and random
walks (I1)

Now imagine that the first drunk is accompanied by his dog
on a leash

The leash establishes a ,long-run equilibrium” between the
drunk and his dog

The dog’s path (7)) is also a random walk, but it is driven by
the first drunk’s path: Z, = f(Y;)

The drunk and his dog can become more or less separated
temporarily

But these deviations will be ,,corrected” by the leash

When we regress the position of the dog on the position of [
the drunk, the result will not be spurious



Integration, cointegration and random
walks (I11)

Q: How do we distinguish between the two cases?
A: Using the concept of cointegration.
We say that two time series are cointegrated if:

— they are both integrated of the same order, for example if both are 1(1)
— there is a linear combination of the two series that is I(0), i.e. stationary

Cointegrated series are non-stationary, but they share a
common non-stationarity because they are linked by a long-
run relationship that does not permit them to drift too far
apart

The Granger Representation Theorem states that if two
variables are cointegrated, then they must be linked by an ECM



Deriving the ECM (l)

Begin with a simple distributed lag model
Vi = o+ o1 X + G2 X1 + P3Y 1 + &
Since, in long run equilibrium, X, =X, =X"and Y, =Y,_; =Y"
Y'=¢ + 1 X"+ G2 X" + 3V + ¢
Y'(1—¢3) = o + X" (1 + ¢2) + &
y* = $o + (P1+¢2) v«

= X* 4 =
(1-¢3)  (1-¢3) (1-¢3)

Thus, the long-run equilibrium relationship between xand yis given by:

&t

V=Rt At

®o and B, (Pp1+¢2)

where fo = 2 (A-¢3) "



Deriving the ECM (lI)

Now start with the same distributed lag model
Yi = ¢o + P1 X + P2Xi 1 + 3V T &
Vi =Yig =0+ G1 X — p1Xe1 + G1 X1 + P2 Xeg +P3Y g — Vi t &
AY; = ¢g + 1 (X — Xe1) + (P1 + P2 X1 + (P3 — DY, + &

(p1 + P2) ®o

AY, = 18X, + (3 = D Yo =7 =05 X1 ~ 3

+ &

This is the basic form of the error correction model. Recall (from the previous slide) that in
the long run:

Y* = :80 + BlX*, with :80 = $o and Bl (p1+¢2)

(1-¢3) (1-¢3)
Therefore, the term [Yt—l - (lefj)) Xiq — (123) is equivalent to Y,_; — 81 X1 — Bo

Hence, the ECM relates changes in one variable to changes in the other, and to deviations
from the long run equilibrium relationship between both variables.



Deriving the ECM (llI)

AYt — 5 ~+ yAXt—l + aECTt_l ~+ gt
where ECT;_1 = Y;_1 — Po — P1X¢—1, the deviation from the long-run
equilibrium relationship in the previous period

* Note that the ECM is balanced in the sense that all variables in it are
1(0)

 Therefore, no danger of spurious regression

 However, all variables in the ECM are [(0) only if Yand Xare
cointegrated, so that the linear combination ECT =Y — [y — ;X is
1(0)

* This is essentially the Granger Representation Theorem again: if Yand
X are cointegrated, there must be a valid ECM that describes their
behavior < if there is a valid ECM for Yand X, they must be
cointegrated



The vector error correction model

(VECM)

What if the drunk’s dog is big and also determines their joint

path?

In other words, why just one equation for Yas a function of X?

Solution: the VECM

k
j}g] = ZZZ] [ ][Yt 1= Bo — B1Xt-1] +Z[
i=1

Or, in price transmission analysis

A
il l -8

Adjustment parameters

o5 1]+2[

N

Coefficient of long-run price transmission

P1j [Z\Yt i 51t
P2j Ath €2t

p1j| [Api; +[€1t]
; B Eat
p2] Apt—l



Visualising cointegration in a VECM (I)

k
1 — Po — 1]+
Lpt] [ t~1 — Bo — B1pi-4] . 52]_ P2 Apt l th
Example, p?is the world market price, pZis the domestlc price in a large exporting country
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Visualising cointegration in a VECM (I)

k
= Bo— BipE ]+ E
Lpt] [ 1= Bo — B1p¢-1] £, 82 Paj Apt l th

Example, p?is the world market price, p?is the domestic price in a small exporting country
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Interpretation

k
Apf| o1 X171 4 B Z 61 paj] [Pt €1t
L\ptB]_[%HQZ] R DY P | eyl

* In most cases we expect o, to be negative and/or a, to be
positive to ensure error correction rather than error
amplification

* Together, |a,| + a, measure the speed of error correction
(always relative to the frequency of the data)

* Generally we expect a4, a.,, and |a,| + o, to be greater
than zero and less than one (in price transmission
applications)



