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Motivation 

• The ECM is a type of time series model with 
which we can estimate the speed at which two or 
more time series return to their common 
equilibrium following a shock that disturbs this 
equilibrium 

• The ECM can directly estimate both long-run and 
short-run effects of one time series on another 

• Thus, ECMs introduce an element of theory to 
time series analysis, which is often criticized as 
being theory-free 



The basic form of the ECM 

• ∆𝑌𝑡 =  𝛿 + 𝛾∆𝑋𝑡−1 +  𝛼𝐸𝐶𝑇𝑡−1 + 𝜀𝑡 

where ECT is the so-called „error correction 
term“ which measures deviations from the long-
run equilibrium between Y and X 
 

• ECMs can be estimated with OLS, although 
other, more sophisticated methods have been 
developed (e.g. Johansen‘s Maximum 
Likelihood approach)  



Stationary and non-stationary data 

• ECMs are most often estimated using non-
stationary time series 

• A stationary time series has a finite mean and 
variance that do not vary with time* 

• 𝑌𝑡 =  𝜌𝑌𝑡−1 + 𝜀𝑡 
– If  0 < 𝜌 < 1, Y  is stationary, otherwise not 

– If 𝜌 > 1, then Y „explodes“ – not very plausible 
in economic settings 

– But what if 𝜌 = 1? 

 
* This is the definition of weak stationarity. Strong stationarity requires that higher order moments also be constant. 



The case of 0 < 𝜌 < 1 

𝑌𝑡 =  𝜌𝑌𝑡−1 + 𝜀𝑡 

𝑌1 =  𝜌𝑌0 + 𝜀1 
𝑌2 =  𝜌𝑌1 + 𝜀2 

Therefore 
𝑌2 =  𝜌(𝜌𝑌0+ 𝜀1) + 𝜀2 = 𝜌2𝑌0 +  𝜌𝜀1 + 𝜀2 

𝑌3 =  𝜌𝑌2 + 𝜀3 

Therefore 
𝑌3 =  𝜌(𝜌(𝜌𝑌0+ 𝜀1) + 𝜀2) + 𝜀3 = 𝜌3𝑌0 + 𝜌2𝜀1  +  𝜌𝜀2 + 𝜀3 

Ultimately 
𝑌𝑡 = 𝜌𝑡𝑌0 + 𝜌𝑡−1𝜀1 + 𝜌𝑡−2𝜀2 + …+ 𝜌𝑡−𝑡+1𝜀𝑡−1 + 𝜌𝑡−𝑡 𝜀𝑡 
𝑌𝑡 = 𝜌𝑡𝑌0 +  𝜌𝑡−𝑖𝜀𝑖

𝑡
𝑖=1   



The case of ρ = 1 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 

𝑌1 = 𝑌0 + 𝜀1 
𝑌2 = 𝑌1 + 𝜀2 

Therefore 
𝑌2 = (𝑌0+ 𝜀1) + 𝜀2 = 𝑌0 + 𝜀1 + 𝜀2 

𝑌3 = 𝑌2 + 𝜀3 

Therefore 
𝑌3 = (𝑌0 + 𝜀1 + 𝜀2) + 𝜀3 = 𝑌0 + 𝜀1  +  𝜀2 + 𝜀3 

Ultimately 
𝑌𝑡 = 𝑌0 + 𝜀1 + 𝜀2 + …+ 𝜀𝑡−1 + 𝜀𝑡 
𝑌𝑡 = 𝑌0 +  𝜀𝑖

𝑡
𝑖=1   



Integrated time series 

• When ρ = 1 we refer to the series as „integrated“ 
• Recall: 𝑌𝑡 = 𝑌0 +  𝜀𝑖

𝑡
𝑖=1  

• As the time interval t  becomes very short (i.e. we 
approach continuous time), this approaches an integral – 
therefore „integrated“ 

• An integrated time series is one type of non-stationary 
time series  

• A time series is integrated of order d – referred to as I(d) – 
if it becomes stationary after being differenced d times 

• If 𝑌𝑡 = 𝑌0 +  𝜀𝑖
𝑡
𝑖=1 , then ∆𝑌𝑡= (𝑌𝑡−𝑌𝑡−1) = 𝜀𝑡, which is 

stationary  
• So the time series 𝑌𝑡 =  𝜌𝑌𝑡−1 + 𝜀𝑡 with ρ = 1 is I(1)  



Example with GRETL 

• Generate a random normal series RanY 
• Generate a random normal series RanX 
• Look at graphs of RanY and RanX, what do you 

see?  
• Now generate the following cumulative sums 

using the „cum“ command (i.e. with 𝜌 = 1) 
 𝑌𝑡 = 𝑌𝑡−1 + 𝑅𝑎𝑛𝑌𝑡 
 𝑋𝑡 = 𝑋𝑡−1 + 𝑅𝑎𝑛𝑋𝑡 
• Look at graphs of Y and X , what do you see? 
• Generate the first differences of Y and X , what is 

the result? 
 



Why does this matter? (I) 

• There are several important differences between I(0) 
(stationary) and I(1) (integrated) time series 

• I(0) series „forget“ – they have finite memory, the 
effect of a shock is transitory 
– Recall: 𝑌𝑡 = 𝜌𝑡𝑌0 +  𝜌𝑡−𝑖𝜀𝑖

𝑡
𝑖=1  

– Only the most recent shocks affect 𝑌𝑡, earlier shocks fade 
with increasing exponents on 𝜌  

• I(1) series never forget – they have infinite memory, 
the effect of a shock is permanent 
– Recall: 𝑌𝑡 = 𝑌0 +  𝜀𝑖

𝑡
𝑖=1   

– 𝑌𝑡 therefore equals its initial value, plus the sum of all 
shocks that have occurred since t=0. 



Why does this matter? (II) 

• Furthermore, many of the time series that we 
work with in empirical economic research (for 
example, many prices) behave as if they were 
I(1) 

• Go back to the data you generated with GRETL 
and see for yourself 



Why does this matter? (III) 

• Most important, although the theory was not 
developed until the 1970s and 1980s, it has long been 
recognized that regression with non-stationary data 
can lead to „spurious regression“ – i.e. nonsense 
results 

• Go back to GRETL: 
– Run the regression 𝑅𝑎𝑛𝑌𝑡 = 𝛽0 + 𝛽1𝑅𝑎𝑛𝑋𝑡  – what do 

you expect, what do you get? 
– Run the regression 𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 – what do you expect, 

what do you get? Surprised? 
– With I(1) data, the likelihood of making a Type-II error 

(rejecting the true null hypothesis that there is no 
relationship between Y and X ) increases dramatically 



Integration and cointegration 

• What we need is a means of distinguishing between 
spurious regression and a true relationship 

• One formerly popular solution was to analyze I(1) time 
series in differenced form: ∆𝑌𝑡= 𝛽0 + 𝛽1∆𝑋𝑡 

• However, this assumes that X  only has short-run effects on 
Y, and ignores the possibility that they share a long-run 
relationship 

• If they do share a long-run relationship, estimating an 
equation in first differences is inefficient because it fails to 
account for information about this relationship 

• When two integrated variables share a long-run equilibrium 
relationship, they are referred to as cointegrated 



Integration, cointegration and random 
walks (I) 

• Imagine a drunk staggering out of a pub. Each step is a 
random draw, and his position after t  such steps is the sum 
of these random draws: 𝑌𝑡 =  𝜀𝑖

𝑡
𝑖=1  

• This is sometimes referred to as a random walk – a random 
walk is an example of an I(1) or integrated, non-stationary 
time series 

• Imagine a second drunk who leaves the pub at the same 
time: 𝑋𝑡 =  𝜀𝑖

𝑡
𝑖=1  

• If we regress Y on X  (or X on Y ) we run the danger of 
spurious regression. The paths taken by the two drunks are 
random and independent, but there is a high probability 
that we will reject the true null hypothesis that they are 

 



Integration, cointegration and random 
walks (II) 

• Now imagine that the first drunk is accompanied by his dog 
on a leash 

• The leash establishes a „long-run equilibrium” between the 
drunk and his dog 

• The dog’s path (Zt) is also a random walk, but it is driven by 
the first drunk’s path: 𝑍𝑡 = 𝑓(𝑌𝑡) 

• The drunk and his dog can become more or less separated 
temporarily 

• But these deviations will be „corrected“ by the leash 

• When we regress the position of the dog on the position of 
the drunk, the result will not be spurious 



Integration, cointegration and random 
walks (III) 

• Q: How do we distinguish between the two cases?  

• A: Using the concept of cointegration. 

• We say that two time series are cointegrated if:  
– they are both integrated of the same order, for example if both are I(1) 

– there is a linear combination of the two series that is I(0), i.e. stationary 

• Cointegrated series are non-stationary, but they share a 
common non-stationarity because they are linked by a long-
run relationship that does not permit them to drift too far 
apart 

• The Granger Representation Theorem states that if two 
variables are cointegrated, then they must be linked by an ECM 



Deriving the ECM (I) 

Begin with a simple distributed lag model 

 
𝑌𝑡 = 𝜙0 + 𝜙1𝑋𝑡 + 𝜙2𝑋𝑡−1 + 𝜙3𝑌𝑡−1 + 𝜀𝑡  

 

Since, in long run equilibrium, 𝑋𝑡 = 𝑋𝑡−1 = 𝑋∗ and 𝑌𝑡 = 𝑌𝑡−1 = 𝑌∗ 

 

𝑌∗ = 𝜙0 + 𝜙1𝑋
∗ + 𝜙2𝑋

∗ + 𝜙3𝑌
∗ + 𝜀𝑡  

 

𝑌∗(1 − 𝜙3) = 𝜙0 + 𝑋∗(𝜙1 + 𝜙2) + 𝜀𝑡   

 

𝑌∗ =
𝜙0

(1−𝜙3)
+

(𝜙1+𝜙2)

(1−𝜙3)
𝑋∗ +

𝜀𝑡

(1−𝜙3)
  

 

Thus, the long-run equilibrium relationship between x and y is given by: 

 

𝑌∗ = 𝛽0 + 𝛽1𝑋
∗ +

𝜀𝑡

(1−𝜙3)
,  

 

where 𝛽0 =
𝜙0

(1−𝜙3)
 and 𝛽1

(𝜙1+𝜙2)

(1−𝜙3)
. 

 

 



Deriving the ECM (II) 
Now start with the same distributed lag model 

 
𝑌𝑡 = 𝜙0 + 𝜙1𝑋𝑡 + 𝜙2𝑋𝑡−1 + 𝜙3𝑌𝑡−1 + 𝜀𝑡  

 

𝑌𝑡 − 𝑌𝑡−1 = 𝜙0 + 𝜙1𝑋𝑡 − 𝜙1𝑋𝑡−1 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−1 + 𝜙3𝑌𝑡−1 − 𝑌𝑡−1 + 𝜀𝑡  

 

∆𝑌𝑡 = 𝜙0 + 𝜙1(𝑋𝑡 − 𝑋𝑡−1) + (𝜙1 + 𝜙2)𝑋𝑡−1 + (𝜙3 − 1)𝑌𝑡−1 + 𝜀𝑡  

 

∆𝑌𝑡 = 𝜙1Δ𝑋𝑡 + (𝜙3 − 1)  𝑌𝑡−1 −
(𝜙1 + 𝜙2)

(1 − 𝜙3)
𝑋𝑡−1 −

𝜙0

(1 − 𝜙3)
 + 𝜀𝑡  

 

This is the basic form of the error correction model. Recall (from the previous slide) that in 

the long run: 

 

 𝑌∗ = 𝛽0 + 𝛽1𝑋
∗, with 𝛽0 =

𝜙0

(1−𝜙3)
 and 𝛽1

(𝜙1+𝜙2)

(1−𝜙3)
 

 

Therefore, the term  𝑌𝑡−1 −
(𝜙1+𝜙2)

(1−𝜙3)
𝑋𝑡−1 −

𝜙0

(1−𝜙3)
  is equivalent to 𝑌𝑡−1 − 𝛽1𝑋𝑡−1 − 𝛽0 

 

Hence, the ECM relates changes in one variable to changes in the other, and to deviations 

from the long run equilibrium relationship between both variables. 

 

 

 



Deriving the ECM (III) 

∆𝑌𝑡 =  𝛿 + 𝛾∆𝑋𝑡−1 +  𝛼𝐸𝐶𝑇𝑡−1 + 𝜀𝑡 

where 𝐸𝐶𝑇𝑡−1 = 𝑌𝑡−1  −  𝛽0 − 𝛽1𝑋𝑡−1, the deviation from the long-run 
equilibrium relationship in the previous period  

 

• Note that the ECM is balanced in the sense that all variables in it are 
I(0) 

• Therefore, no danger of spurious regression 

• However, all variables in the ECM are I(0) only if Y and X are 
cointegrated, so that the linear combination 𝐸𝐶𝑇 = 𝑌 − 𝛽0 − 𝛽1𝑋 is 
I(0) 

• This is essentially the Granger Representation Theorem again: if Y and 
X  are cointegrated, there must be a valid ECM that describes their 
behavior  if there is a valid ECM for Y and X , they must be 
cointegrated  

 



The vector error correction model 
(VECM) 

• What if the drunk’s dog is big and also determines their joint 
path?  

• In other words, why just one equation for Y as a function of X ? 

• Solution: the VECM 

𝛥𝑌𝑡
𝛥𝑋𝑡

=
𝜑1

𝜑2
+

𝛼1

𝛼2
𝑌𝑡−1 − 𝛽0 − 𝛽1𝑋𝑡−1 +  

𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗

𝑘

𝑖=1

𝛥𝑌𝑡−𝑖

𝛥𝑋𝑡−𝑖
+

𝜀1𝑡

𝜀2𝑡
 

• Or, in price transmission analysis 

𝛥𝑝𝑡
𝐴

𝛥𝑝𝑡
𝐵 =

𝜑1

𝜑2
+

𝛼1

𝛼2
𝑝𝑡−1

𝐴 − 𝛽0 − 𝛽1𝑝𝑡−1
𝐵 +  

𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗

𝑘

𝑖=1

𝛥𝑝𝑡−𝑖
𝐴

𝛥𝑝𝑡−𝑖
𝐵 +

𝜀1𝑡

𝜀2𝑡
 

 

Adjustment parameters Coefficient of long-run price transmission 



Visualising cointegration in a VECM (I) 

pA, pB 

time t0 t2 t3 t1 

pB = -0 + pA  
0 

>0 

0 

𝛥𝑝𝑡
𝐴

𝛥𝑝𝑡
𝐵 =

𝜑1

𝜑2
+

𝛼1

𝛼2
𝑝𝑡−1

𝐴 − 𝛽0 − 𝛽1𝑝𝑡−1
𝐵 +  

𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗

𝑘

𝑖=1

𝛥𝑝𝑡−𝑖
𝐴

𝛥𝑝𝑡−𝑖
𝐵 +

𝜀1𝑡

𝜀2𝑡
 

Example, pA is the world market price, pB is the domestic price in a large exporting country 



Visualising cointegration in a VECM (I) 

𝛥𝑝𝑡
𝐴

𝛥𝑝𝑡
𝐵 =

𝜑1

𝜑2
+

𝛼1

𝛼2
𝑝𝑡−1

𝐴 − 𝛽0 − 𝛽1𝑝𝑡−1
𝐵 +  

𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗

𝑘

𝑖=1

𝛥𝑝𝑡−𝑖
𝐴

𝛥𝑝𝑡−𝑖
𝐵 +

𝜀1𝑡

𝜀2𝑡
 

Example, pA is the world market price, pB is the domestic price in a small exporting country 

pA, pB 

time t0 t2 t3 t1 

pB = -0 + pA  
0 

>0 

0 



Interpretation 

𝛥𝑝𝑡
𝐴

𝛥𝑝𝑡
𝐵 =

𝜑1

𝜑2
+

𝛼1

𝛼2
𝑝𝑡−1

𝐴 − 𝛽0 − 𝛽1𝑝𝑡−1
𝐵 +  

𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗

𝑘

𝑖=1

𝛥𝑝𝑡−𝑖
𝐴

𝛥𝑝𝑡−𝑖
𝐵 +

𝜀1𝑡

𝜀2𝑡
 

 

• In most cases we expect 1 to be negative and/or 2 to be 
positive to ensure error correction rather than error 
amplification 

• Together, 1  + 2 measure the speed of error correction 
(always relative to the frequency of the data) 

• Generally we expect 1, 2, and 1  + 2 to be greater 
than zero and less than one (in price transmission 
applications) 


